If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-10x-2320=0
a = 14; b = -10; c = -2320;
Δ = b2-4ac
Δ = -102-4·14·(-2320)
Δ = 130020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{130020}=\sqrt{4*32505}=\sqrt{4}*\sqrt{32505}=2\sqrt{32505}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{32505}}{2*14}=\frac{10-2\sqrt{32505}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{32505}}{2*14}=\frac{10+2\sqrt{32505}}{28} $
| 1.75=w+2*w*0.1 | | (4+7)=(5x-1) | | 50/3.14=x | | -4(z+3=8 | | 4(z+3=8 | | 2z2+13z+15=0 | | -4(z+3=-8 | | 24d=360 | | 4(z+3=-8 | | -8(-7x-1)=56x+8 | | 2/3(6x-15=4x+2(x-13) | | 2.1/x=10.1 | | -(-x-7)=x+6 | | .25*100=0.18*x | | -2(7x-4)=-14x+7 | | 130=x+2 | | 14.9=8.6-0.9x | | x(.4)=7900 | | 4(x+3+3x=-2x-3x+12 | | -0.4(3x-1)+8(0.8-0.3)=5(3.8x+4) | | 2.6x-3.4=5.6x=9.2 | | 12+15x=10x+43 | | 11x=7=-2x-6 | | 15x+12=10x+43 | | 6x+10-8x=3 | | h+17=21 | | 20+h=70 | | -1-7x-3=1x+10-10x | | (15x+8)+(9x+26)=180 | | 6x+1=-13x-16 | | 48=n+28 | | 5x=28+9x |